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Molecules Using Free-Electron Orbitals as a Basis 

H. M. Cartwright 
Department of Chemistry, University of  Victoria, Victoria, British Columbia, Canada V8W 2Y2 

T. R. J. Bossomaier and R. Grinter 
School of  Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, England 

A non-empirical molecular orbital method, particularly suitable for calculations on 
cage-like molecules, is described. The method uses as basis functions the set of 
free-electron functions which are the solutions of SchrSdinger's equation for an 
electron confined between two concentric, spherical potential energy barriers. 
Application of the theory to the SCF calculation of the energies of the delocalized 
electrons in benzene and tetrasulphur tetranitride shows that the model is capable 
of interpreting the properties of such systems. However, it does highlight a dif- 
ficulty in the calculation of excited state energies with one-centre models which 
appears to be largely unrecognized. 

Extension of the method to a consideration of all the valence electrons, using P4 
as an example, reveals problems the origin of which is an inadequate treatment of 
the core electrons. It is suggested that these problems may best be dealt with by use 
of a suitable pseudo potential. 
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I. Theory 

The free-electron approach to the description of electronic structure has been applied to 
a variety of molecules [1-7]. Such an approach is essentially a topological one, inasmuch 
as the shape of the potential box in which the free electrons move is directly related 
to the shape of the molecule itself. 

In spite of the drastic nature of the assumptions in the free electron model, the 
approach embodies a number of advantages, among which are: 

a) Conceptual simplicity - the potential in which the electrons move, and the free- 
electron orbitals themselves are generally readily visualized [8]. 

b) Computational simplicity - a much smaller amount of computer time is needed 
than for more rigorous calculations [9-14] and useful results may often be 
obtained using nothing more sophisticated than pen and paper [15, 16] as in the 
remarkable results of Chapman and Waddington [ 16]. 
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In view of these advantages, free-electron models may perhaps have been under-utilized 
since Hartree-Fock caclulations on small molecules of chemical interest became feasible. 
In this paper we consider the refinement of a free-electron model, developed by Hunter 
[1, 2] for F-centres in alkali halides, and its application to cage-like molecules for 
which the model is topologically suitable. Hoffmann and Gouterman [17] have also 
described a similar model but do not appear to have developed it further. 

1.1. The Free-Electron Model 

In Hunter's model [1, 2] the most loosely bound electrons in the molecular system 
are confined within a region of zero potential energy, bounded by two concentric 
spherical potential barriers of infinite height. In a cage-like molecule all, or nearly all, 
the atoms of the molecule will be within this region and they, being positively charged 
since they have lost electrons to the free-electron system, create the potential energy 
well. This is exactly analogous to the well-known free-electron theory of conjugated 
hydrocarbons. 

Placing the origin of coordinates at the centre of the two concentric spherical potential 
barriers, the Schr5dinger equation may be solved by assuming a solution of the form: 

= R(r) .  o(o). e(r (1) 

The separation of the variables proceeds in the usual way [18] and since the potential 
has spherical symmetry about the origin, the angular solutions are identical [19] with 
the spherical harmonics obtained in the solutions of the Schr6dinger equation for the 
hydrogen atom. 

~2 = R(r) Y*m (o, ~,). 

The radial part of the wave function, R(r), must satisfy the equation: 

(2) 

l d {r2dR 1 + 2r2E = l(l + 1) (3) 
R d r l  d r ]  

which can readily be converted into Bessel's equation of half-integral order, for which 
the solutions are [20] : 

R(r)  = r -I/2 [AJI+ ff2(kr) + B J_ l-  ll2(kr)] (4) 

In Eq. (4)'Jr+ 1/2 and J_ t -  1/2 are Bessel functions of half-integral order and A and B 
are constants. 

Thus, the complete free-electron orbitals are given by Eq. (5) in which n, l, and m are 
quantum numbers and N '  is a normalizing factor. 

~bn, 1, m = N ' r -  1/2 [AJI + 112 (kr) + B J_ t - 1/2 (kr)] Ylm (0, (~), (5) 

k is related to the one-electron orbital energy, E (in atomic units), by Eq. (6). 

k = (2E) 1/z. (6) 
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1.2. The Orbital Energies 

The requirement that the radial function (4) goes to zero at r e and r~, the radii of  the 

inner and outer potential  barriers respectively, gives the condition: 

Jl+ 1/2(kre)J-l- ~[ /2 (k r13 )  - Jl+l/2(k~[3) J-/-1/2(kre) = 0 (7) 

which determines k, znd hence E, the orbital energy, as a function of  the shell radii 
and the quantum number l. The dependence of  the orbital energy upon the values of  

r e and r~ is shown in Fig. 1. The energy, E, is plot ted against 2(rfl - re)/(r# + re) = A 
for an average radius, r o = (r~ + re)/2,  of 1.74 A. The notat ion for the orbitals is of  the 
form nl where n gives the number of  radial nodes in the wave function, plus 1, and the 
l value is denoted by s, p, d etc.: as in the hydrogen atom. 

1.3. The Normalization o f  the Wave Functions 

It is convenient to make the substitution Q = B/A  in Eq. (4) which allows us to write 
the radial wave function in the marginally abbreviated form: 

R(r )  = N r  1/2 [Jl+ ll2(kr) + Q J - l -  ff2(kr)] �9 (8) 

Once k has been found Q may be determined from either of  the conditions, R ( r e )  = 
R(r~) = 0. When the inner radius is zero Q becomes zero. 

We normalize R(r )  according to Eq. (9), 
r R  

f~(R(r)} 2 r2 dr = 1, (9) 
re 
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Fig. 1. Orbital energies (a.u.) as a func- 
tion of Zx { = 2(rfl - ra)/(r fl + re)}, 
r o = (rfl + re)/2 = 1.74 A 
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simplifying the integral by means of the properties of Bessel and cylinder functions 
[20] to give: 

N - 2  = Q j _  l - 3/2 ( J l  - 1/2 - Q J -  l + 1 ]2 } + 2Q Jr + 3/2 J -  l + 1/2" (10) 

Our purpose is to use the free-electron wave functions described above as a basis for a 
self-consistent field calculation of the electronic structures of cage-like molecules, 
restricting the calculation, however, to the most loosely bound electrons. That is we 
consider the remaining electrons, together with the nuclei, to form a set of point 
charges which provide the potential field in which the labile electrons move. This is 
clearly a rather drastic approximation. However, it should be to some extent compen- 
sated by the fact that with the limited basis sets at our disposal we would not expect 
to produce high electron densities in the immediate neighbourhood of the nuclei. The 
empirical choice of the Hamiltonian and the restriction of the basis set represent the 
only approximations in the model. 

In order to proceed with the calculations two more quantities must be evaluated; the 
electron-atomic core attraction and the interelectronic repulsion. 

1.4. The Electron-Core Attraction 

The atomic cores are assumed to be point charges having spherical polar coordinates 
rn, On, On and the matrix elements of the electron-core attraction are given by Eq. (11). 

( ~,(i)  er@.~ ~v(i)) = -eqn cos (m u - mv)gn 

1/2 

~ (  2 ) ~  O ~ u _ r n  v (On)Cg(l~m .lvmv ) 

k=O 

rn k + 2  r(j k x 

~ 'i R.(r)R~(r)dri + R.(r)R~(r)dri . (11) 

Equation (11) is simply a slightly modified form of the expression for interelectronic 
repulsion in atoms [21] and all the symbols used have the meaning which they have 
in that context. It is very tedious to evaluate any but the simplest of the radial integrals 
of Eq. (11) in closed form, and we have found it preferable to calculate them numeric- 
ally using Gaussian quadrature [22]. 

1.5. The Electron-Electron Repulsion 

The matrix elements of the electron-electron repulsion operator can be readily 



Calculations of the Electronic Structures of Cage Molecules 269 

expressed in a form effectively identical to that for the corresponding matrix elements 
in atoms [21], Eq. (12). 

(~(i)~v(J) e~T] I~p(i)~o(l')) =e2 

Ck qumu, lomo ) " Ck (lomo, lvmv) k 

r~ r~ } 
+ f R.(ri)Rp(ri)r + 2dri f R~(ri)Ro(r/)r] -edr] . 

ro~ r i 
(12) 

No general method of evaluating the radial integrals above has been found, but they 
can be readily determined using linked Gaussian quadrature [22-24] ; Appendix A. 

With the aid of the integrals calculated above, an iterative self-consistent field calcula- 
tion can be carried out and the radii ra and r~ varied to find the lowest total energy 
of the system. 

2. Applications 

The area of application of the theory outlined above appears, first and foremost, to be 
the electronic properties of those cage-like molecules which are believed to contain a 
significant number of delocalized electrons. By delocalized electrons we shall mean 
those which have substantial densities on more than two atoms, and for which the 
eigenfunctions of the Fock operator cannot be transformed to any localized form; e.g. 
the n-electron orbitals of benzene. Metal clusters, the polyhedral frameworks of boranes 
and carboranes and cages of elements of groups V and VI such as S4N 4 and PaS3, are 
examples which immediately come to mind, Cage molecules in which the bonding 
electrons are highly localized, cubane for instance, would not be suitable cases for 
calculation by this model. 

The method seems particularly well suited to the description of the electronic spectra, 
and related properties, of molecular cages since such properties are known to be largely 
determined (in the readily accessible regions) by the delocalized electrons. Further, the 
successful interpretation of electronic spectra depends critically upon a correct ordering 
of energy levels which, in turn, requires either extensive parametrization or accurate 
evaluation of electron repulsion integrals. The model described here is capable of 
providing all the required electron interaction integrals without neglect, approximation 
or parametrization. We illustrate the method with trial calculations on tetrasulphur 
tetranitride (Fig. 2) and benzene, although the latter is perhaps not well suited to our 
method since, being planar, it creates some redundancy in the basis set. 
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Fig. 2. The structure of tetrasulphur tetranitride, SaN 4 

2.1. Tetrasulphur Tetranitride $4N4 

There is no general agreement as to the number of electrons involved in the delocalized 
system of this molecule. Chapman and Waddington [16], Gleiter [25] and Mingos [26] 
have proposed eight while Banister [15] has suggested twelve. We have used eight 
electrons for the following reasons. Firstly, a satisfactory orbital scheme for the 
remaining valence electrons can be set up involving two-electron S-N bonds, lone pairs 
and an S-S bond between adjacent sulphur atoms [27]. The existence of the latter 
bond is fairly well established, and Turner and Mortimer [28] even suggest that it is a 
pure o interaction. Secondly, the principal alternative, 12 electrons, implies using an 
effective nuclear charge of two units on sulphur. This would be expected to produce a 
rather heavily localized electron density in the region of the sulphur atoms which basis 
sets such as the one used here cannot describe accurately without using a very large 
number of basis functions. We therefore consider eight delocatized electrons but allow 
charge polarization of the sulphur and nitrogen cores. Thus, if QN and Qs are the 
positive charges on nitrogen and sulphur respectively, then we require that 

QN + Qs = 2.0. 

Preliminary calculations showed that the position of minimum energy always corres- 
ponded to an inner radius, ra, of zero. The outer radius, r& was usually in the range 
3-4 A. All the results described here have been obtained by setting r~ to zero and 
adjusting r~ to give the minimum total energy. 

The results are summarized in Table 1. Only the lower energy virtual orbitals are given 
in the cases of the larger basis sets. The gross features of the results are satisfactory. 
The molecular orbital energies are physically reasonable, there are always four bonding 
orbitals, and no more, and the total energy decreases as the basis set is expanded, though 
by an amount which suggests that we are using far from optimum basis sets. 

The experimentally determined ionization potentials of S4N 4 [29] are shown on the 
right of Table 1. One would expect a Jahn-Teller splitting from the le level, and this 
can be quite large; 0,7 eV in the case of methane for example [30]. It therefore seems 
reasonable to interpret the data in this way and it is seen that the agreement with 
experiment, if not striking, is quite acceptable for a model which contains no experi- 
mentally adjusted parameters; the only empirical element being the choice of model 
Hamiltonian at the outset. 

The same might also be said of the comparison of the calculated excited state energies 
with electronic spectral data, Table 1. The E state has been unambiguouslyassigned 
from magnetic circular dichroism spectra [31 ], the other two probably correspond to 
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forbidden transitions and must therefore be of A 1, A 2 or B1 Symmetry in D2a. Thus 
the calculations fail to predict the second, low-inlensity band except in the case of 
the largest basis set. If, as appears reasonable, we assume that this represents the "best" 
calculation then the agreement with the electronic spectral data is quite good for 
QN = 1.0. For the ionization potentials, however, a less even distribution of charge seems 
indicated. 

Z Z  Benzene 

Our calculations on this molecule are summarized in Table 2. The molecular orbitals 
calculated with the present model lack the planar mode containing the six carbon 
atoms which characterizes the usual g-electron LCAO MOs. However, in other respects, 
the nodes perpendicular to the plane of the benzene ring in particular, the present 
functions bear a very close resemblance to them. As with S4N4, we again find the 
results physically reasonable and, as far as the orbital energies are concerned, in quite 
acceptable agreement with experiment for a theory with no experimentally adjustable 
parameters. The comparison with the ab initio calculations [32-34] is made not because 
we wish our model to be regarded as an ab initio method, but because those results 
show just how sensitive the g-electron orbitals of benzene are to the basis set chosen. 
Hay and Shavitt [32] used a double-~" set of 72 contracted Gaussians to obtain the 
orbital energies quoted in Table 2. For the calculation of the ~r-electron excited states 
this basis was augmented by two diffuse rr functions on each carbon atom and thousands 
of configurations were included in the configuration interaction calculation. Peyerimhoff 
and Buenker [33] used a basis set of approximate Hartree-Fock atomic orbitals 
expanded in terms of Gaussians. To increase the flexibility of the 7r-electron part of 
the wave function the pTr group functions were decomposed into a four-component 
short-range part and a one-component long-range part. This made little difference to 
the total energy but had a major effect on the composition of the 7r orbitals. Hay and 
Shavitt [32] report the same experience with their augmenting 7r functions. 

Ermler, Mulliken and Clementi [34] used a large contracted Gaussian basis set with the 
addition of p- and d-type polarization functions on hydrogen and carbon respectively. 
They did not attempt calculations of the energies of excited states. 

Comparison with experiment shows that, with regard to the orbital energies, the agree- 
ment is quite good, particularly in the case of the larger basis sets. The excited state 
energies however are uniformly too high, and, in the case of the triplets, their order 
does not correspond to the experimental sequence of energies. Closer inspection reveals 
that this latter problem is of a very fundamental nature since for several basis sets the 
Blu and Bzu states are calculated to have the same energy, which is not in accord with 
experiment. This situation arises because the one-electron basis functions span the 
following irreducible representations in D6h symmetry; s - alg; p - a2u, elu; d - alg, 

el g2g, f ~ a2u, etu, e2u, biu, bzu. The highest occupied and lowest unoccupied orbitals 
for all the basis sets considered are elu and ezg respectively. 

In D6helu x ezg = Blu, B2u and Elu and, in principle, the Blu and B2u states may have 
different energies. However, in the present model the electron repulsion operator which 
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lifts the degeneracy between the four, one-electron elu -+ ezg transitions has full 
rotational symmetry. Thus it cannot split states differing only in the sign of the 
z-component of their electronic angular momentum; -+3(~ u in D=h) in this particular 
case. Only by introducing an elecfron repulsion term which is dependent upon the D6h 
symmetry of the atomic cores can this degeneracy be lifted, as it is in the Pariser-Parr- 
Pople treatment of the n-electron structure of benzene for example. 

The very high symmetry of the electron repulsion operator must give rise to problems 
of this type in any one-centre method and this does not appear to have been clearly 
recognized in the literature. Naturally, if the basis set forms part of a complete set, 
then by expanding it sufficiently results of any desired degree of accuracy may be 
obtained - within the limits of the HF approximation. But this constitutes another 
reason why one-centre basis sets have to be rather large if they are to give a good 
description of the system to which they are applied. 

In our example, by adding f orbitals to the basis we can generate vacant orbitals of 
blu and b2u symmetry which, through transitions to them from the occupied aag 
orbital, will give rise to Blu and B2u states of unequal energies. The effect can be seen 
in the results quoted in Table 2. However, the energy separation of the lowest Blu and 
B2u states is very small because the states with which they are interacting are much 
higher in energy. Clearly, a large amount of configuration interaction would be required 
to give good agreement with experiment. 

From the results for S4N 4 and benzene described above it might appear that, with the 
introduction of suitably chosen parameters, the theory might be capable of reproducing 
electronic properties with an accuracy of the same order as that of other semi-empirical 
methods. However, it is not our purpose to attempt such a process for two reasons. 
In the first case, there is already a wide range of semi-empirical methods available [35], 
although they tend to be restricted to first- and second-row elements. Secondly, and in 
our view more importantly, the particular systems which we have in mind, cage-type 
molecules and ions in general, are of such wide variety that it appears improbable in 
the extreme that any satisfactory parametrization could be found, except within very 
restricted classes; the boranes and carboranes, for example. Our intention is to explore 
the model more deeply, and to this end we now consider its application to problems 
where a much larger proportion of the valence electrons of a molecule require to be 
considered. 

3. Systems in which it is Necessary to Treat All the Valence Electrons 

In the cases of benzene and tetrasulphur tetranitride it appears quite acceptable to 
separate out a comparatively small number of valence electrons for special treatment. 
In the case of conjugated hydrocarbons this concept has been one of the most fruitful 
in the history of theoretical chemistry. But in trying to find a model for the effective 
description of the electronic structures of cage-type molecules it is not always possible 
to select such a group of electrons. A consideration of the tetrahedral phosphorus 



Calculations of  the  Electronic Structures of  Cage Molecules 275 

molecule, P4, will highlight this problem, and will also serve to illustrate the ways in 
which the simple theory outlined above must be developed if it is to have any wide- 
spread applicability. 

P4 is a compact molecule with twenty valence electrons surrounding four cores of ten 
electrons each, Even though a formal structure of two-electron P-P bonds and lone 
pairs can be drawn it seems inconceivable that such a structure can truly represent the 
electronic structure of P4 and one would expect extensive delocalization. Also, the 
six bond-pairs at the edges of the triangular faces would be expected to "spill over" 
into the centres of the faces, an effect which is found in ab initio calculations [36]. In 
brief, in our model all twenty valence electrons must be considered, and this is what 
we have done. The results are given in Table 3. 

It is immediately apparent that there are far too few bonding orbitals. However, we 
observe that the number of bonding orbitals increases as the outer shell radius increases 
and this provides a clue to the understanding of the problem; it can be interpreted in 
two ways. Firstiy, it may be due to the repulsion integrals giving too large a positive 
contribution to the orbital energies at the radius of minimum total energy. This could 
be caused by a failure of the model to include shielding of repulsions between valence 
electrons by the positively charged cores [37]. Alternatively, one might say that the 
fact that we get the correct number of bonding orbitals for a radius greater than that 
for minimum energy indicates an incorrect balance of one-electron attractive and two- 
electron repulsive terms. Again, an inadequate treatment of the atomic cores seems 
indicated. 

The shortcomings of the present model with respect to its treatment of the core 
electrons are easily seen in the following analysis. In calculating orbitals for twenty 
electrons in the field of four cores, each with a charge of +5, we are effectively perform- 

Table 3. Calculated energy levels for P4 a 

lslp ldlf2s lslp ldlf2s2p ab initio 
Calculation b 

Total energy 

r~/A 

Orbital 
energies 
l a l  - 1 . 7 2 0  - 1 . 7 4 2  - 1 . 1 5 8  
l t2  - 1 . 5 0 8  - 1 . 4 8 4  - 0 . 7 7 2  
2a 1 - 0 . 0 6 0  0.396 - 0 . 4 5 8  
2t2 0.182 0.469 - 0 . 4 1 0  
le  0.247 0.596 - 0 . 3 8 5  
l t l  0.704 1.106 0.061 
3al  0.818 1.230 - 
3t 2 1.071 1.506 0.066 
4t 2 1.654 - 

- 3 3 . 3 7 7  - 3 3 . 3 7 7  

2.34 2.10 

a All entries calculated using five quadrature points. All energies in a.u. 
b Ref. [36] .  
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ing calculations on B 4 with the geometry of P4. This has two consequences. Firstly, 
we know that if a tetrahedral molecule B 4 existed it would certainly have eight electrons 
which were highly localized in pairs around the boron nuclei, i.e. they would be boron 
ls electrons. Our model must be very poor at reproducing the wave functions of such 
electrons. Secondly, the molecule cannot be in equilibrium unless the nuclei are allowed 
to move much closer together. Finally, by ignoring the core electrons we give o u r  
valence electrons too much space in which to move. This is clear from the fact that the 
radii for minimum energy given in Table 3 are only 2.34 and 2.10 A, while the nuclei 
tie at 1.353 A, from the centre. 

It is clear that our model can only be extended to systems in which we require to 
handle fairly large numbers of valence electrons if we consider the core electrons much 
more explicitly than we have done so far. It is equally obvious that the model cannot 
treat these inner electrons directly since one-centre models are notoriously inadequate 
for reproducing highly localized off-centre electron density [38]. The pseudo potential 
theory, long known in solid-state physics but only comparatively recently applied to 

molecular problems, appears to be the ideal method for dealing with difficulties out- 
lined above. This will be the subject of a second paper. 
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Appendix A 

Evaluation o f  Electron Repulsion Integrals 

The repulsion double integrals are of two types: 

B x 

I .  = f f(x)d.x f g(y)dy (A1) 
A C 

B D 

Iv : ~ f (x)dx I g(y)dy (A2) 
A x 

Gaussian quadrature provides an accurate and comparatively s~lple means of evaluating 
these two integrals. 

The following substitutions are made in the integral I u to change the limits of the outer 
integration to zero to one: 

x = A  + ( B - A ) f i  

f (x)  = f [A + (B - A )p] - F ( p )  (A3) 

dx = (B - A ) dp 
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so that 

1 x 

Iu = f [F(p)] (B-  A)dp  f g(y)dy 
0 C 

N Q P  

= ( B  - A)  E RmXm(Pm) (A4) 
m = l  

where Pm and R m are the Gaussian quadrature nodes and weights respectively of an 
NQP-point set, and Xm(Pm ) is defined by Eq. (A5) 

A + ( B - A ) p  m 

Xm(Pm ) = F(Pm) f g(y)dy.  (AS) 
c 

The integral in (A5) can similarly be approximated by quadrature; the limits of this 
integration are changed to zero to one by the substitutions 

y = C + [A + (B - A)p m - C] qn (A6) 

giy)= g(C + [A + (B - A ) p m -  C] qn} - G(Pm, qn) 

dy = [A + ( B -  A)p  m - C] dq. 

So that 

Xm(Pm) = F(Pm)[A + (11 - A)p m - C] 
1 

f G(pm, qn)dq 
0 

= F(Pm)[A + ( B -  A)p m -- C] 
NQP 

E RnG(Pm, qn) 
r t = l  

(A7) 

where qn and Rn are the Gaussian quadrature nodes and weights respectively of an 
NQP-point set. Combining Eqs. (A7) and (A4): 

NQP 
I u = ( B - A )  E R m ' f [ A  + ( B - A ) p m ] ' [ A + ( B - A ) P m - C ]  

m = l  

NQP 
E Rn 'g (C+ [A + ( B - A ) p  m - C]qn). 

r t = l  
(A8) 

The corresponding formula for I v can be derived in a similar way; it is 

io =(B-  A) 
N Q P  

R m "f[A + (B - A)Pm]" [D - A + (A - B)pm] 
m = l  

NQP 

E Rn 'g (A  + ( B - A ) P m  + [ D - A  +(A - B ) p m ] q n  ). 
II=1 

(A9) 
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The accuracy of this type of linked quadrature is governed by the same factors that 
determine the accuracy of simple Gaussian quadrature [22]. Notably, since the integrand 

is replaced by a polynomial, the accuracy will depend upon the fidelity with which 

polynomials of degree (2NQP + 1) can replace the two integrands f (x)  and g(x). 
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